

Tel: +27(0) 31 708 3433 Cell: +27(0) 83 3210618

Email: nish@nondestructive.co.za Web: www.nondestructive.co.za

This document forms an integral part of the Nasa Dbn (Pty) Ltd. (Nasa) Quality Management System Adherence to the requirements specified within are mandatory upon all Nasa Personnel and Subcontractors. This is a controlled document and may not be altered without authorisation from the Nasa Training Coordinator.

NASA 213

Magnetic Particle Testing Curriculum

Document Number:	Document Title:	Revision:	Issue Dated:	Page No:
Nasa 213	Magnetic Particle Testing Curriculum	2	02-Apr-2025	1 of 6

Revision control sheet:

Rev No:	Date:	Compiled by:	Reviewed by:	Revision Description:
1	09-Jan-2018	Meyuri Moodley	Nishaan Kanhaye	Revised toward improvement. Name change. Aligned to BINDT approved course notes.
2	02-Apr-2025	Acacia Sureschandra	Nishaan Kanhaye	The document format was updated.

Document Number:	Document Title:	Revision:	Issue Dated:	Page No:
Nasa 213	Magnetic Particle Testing Curriculum	2	02-Apr-2025	2 of 6

1.0 Course Duration:

- 1.1 Level 1 and 2 Combined:
 - a) The minimum training hours administered in Level 1 shall be 16.
 - b) The minimum training hours administered in Level 2 shall be 24.
 - c) For Level 1 and 2 combined courses the total training hours shall be a minimum of 40.
- 1.2 In all cases, level 1, level 2 or combined level 1 and 2, NASA shall administer the full theory content of Level 1 and 2.

2.0 Course Content:

2.1 Theory: The table below shows theory aspects covered:

Chapter Reference:	Level 1 and 2 combined:
Chapter 1:	SNT-TC-1A and ISO 9712
Qualification, Certification and Authorisation	Levels of Qualification

Chapter 2: Basic Principles	Introduction Basic Principles History Test Procedures Test Objective Advantages
	Disadvantages

	Theory of Magnetisation
	Lines of Force
	Vector Field
	Material Properties
	Permeability
Chapter 3:	Reluctance
Magnetic Properties	Retentivity
	Residual Magnetism
	Coercive Force
	Magnetic Flux and Magnetic Flux Density
	Flux Leakage
	Electromagnetism

	Direct Current
	Alternating Current
Charter 4	Rectified Alternating Current
Chapter 4:	Half Wave Rectified Alternating Current (HWAC)
Current Types	Full Wave Rectified Alternating Current (FWAC)
	Three Phase Full Wave Rectified Alternating Current
	Root Mean Square (RMS) Alternating Current (AC) Values

Document Number:	Document Title:	Revision:	Issue Dated:	Page No:
Nasa 213	Magnetic Particle Testing Curriculum	2	02-Apr-2025	3 of 6

	Continuous Method
	Residual Magnetisation Method
	Longitudinal Magnetisation
	Permanent Magnets
	Advantages Of Permanent Magnets
	Disadvantages of permanent magnets
	Electromagnetic Yokes
	Advantages of Electromagnetic Yokes
	Disadvantages Of Electromagnetic Yokes
	Coil Technique
	Advantages of using a Coil
Chapter 5:	Disadvantages of using a coil
Magnetizing Methods	Circular Magnetisation
	Prod Technique
	Advantages of the Prod Technique
	Disadvantages of the Prod Technique
	Direct Magnetisation – Head Shots (Current Flow Technique)
	Advantages of the Head Shot Technique
	Disadvantages of the Head Shot Technique
	Central Conductor Technique (Induction Method)
	Advantages of the Central Conductor Technique
	Disadvantages of the Central Conductor Technique
	Multidirectional Technique
	Types of Power Supplies

Chapter 6:	Reversing the Magnetic Field
Demagnetisation	Reducing the Magnetic Field

	Dry Magnetic Particles
Chapter 7:	Wet Magnetic Particles
Detection Medium	Magnetic Rubber
	Health and Safety Considerations

	Electromagnetic Spectrum
Chantar 9	Visible Method
Chapter 8:	Fluorescent Method
Viewing Conditions	Light Measurement
	Safety

	Field Direction
Chapter 9: Magnetic Field Indicators	Field Strength
	Portable Magnetic Field Strength Meters
	Shim Type / Foil Strips
	The ASME Field Indicator
	The Berthold Penetrameter (Berthold Spoon)
	Hall Effect Meters

Document Number:	Document Title:	Revision:	Issue Dated:	Page No:
Nasa 213	Magnetic Particle Testing Curriculum	2	02-Apr-2025	4 of 6

	Calibration of Electrical Systems
	Calibration of Light Meters and Thermometers
	Current Flow Performance Check
Chapter 10:	Magnetic Flow Performance Check
Performance Checks	Alternative Test Blocks
	Yoke Lift Test
	Settling Test
	UV-Light Calibration Test
	Interpretation
	False Indications
	Non-Relevant Indications
	Relevant Indications
	Evaluation
	Discontinuity Categories
	Inherent Discontinuities
	Processing Discontinuities
	Service Discontinuities
Chapter 11:	Crack Indications
Classification of Discontinuities	Solidification Cracks
Classification of Discontinuities	Processing Cracks
	Service Cracks
	Porosity Indications
	Forgings and Castings
	Plate
	Welds
	Extrusions
	Grinding Cracks
	Heat Treatment Cracks
	Fatigue Cracks

2.2 Practical: The table below shows practical aspects covered:

Level 1 and Level 2 Combined:

Pre-test checks

Visible techniques using electromagnetic yokes

Visible light intensity measurement and verification at test area

Pre-cleaning of test specimens

Application of technique

Viewing and interpretation of detected indications

Recording and reporting according to written instructions

Post cleaning

Fluorescent techniques using electromagnetic yokes

Ultraviolet light intensity measurement and verification at test area

Selection of testing techniques

Evaluation of indications according to codes, specifications or procedures

Document Number:	Document Title:	Revision:	Issue Dated:	Page No:
Nasa 213	Magnetic Particle Testing Curriculum	2	02-Apr-2025	5 of 6

3.0 Learning outcomes:

3.1 Upon completion of training, students should be able to carry out and understand the following regarding visual testing:

Level 1 and Level 2 Combined:

Basic principles

General advantages and limitations

Discontinuity categories

Carry out pre-test checks, set up equipment, carry out tests and report results according to written instructions Basic principles

General advantages and limitations

Selection of electric currents used

Discontinuity associated with manufacturing processes, categories and types

Differences between visible and fluorescent methods

Select test technique to be used based on specimen type, material, surface finish, etc.

Interpret codes, specifications and procedures.

Compile instructions according to specifications, codes or procedures

Carry out pre-test checks, set up equipment, perform tests and report results

4.0 Course Outcome:

4.1 Successful Completion of Training:

Upon successful completion of the course, a successful completion of training certificate at the level attempted will be issued which meets eligibility to undertake the external PCN examination.

Document Number:	Document Title:	Revision:	Issue Dated:	Page No:
Nasa 213	Magnetic Particle Testing Curriculum	2	02-Apr-2025	6 of 6